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THE PIECEWISE POLYNOMIAL COLLOCATION METHOD FOR 
NONLINEAR WEAKLY SINGULAR VOLTERRA EQUATIONS 

HERMANN BRUNNER, ARVET PEDAS, AND GENNADI VAINIKKO 

ABSTRACT. Second-kind Volterra integral equations with weakly singular ker- 
nels typically have solutions which are nonssmooth near the initial point of the 
interval of integration. Using an adaptation of the analysis originally devel- 
oped for nonlinear weakly singular Fredholm integral equations, we present 
a complete discussion of the optimal (global and local) order of convergence 
of piecewise polynomial collocation methods on graded grids for nonlinear 
Volterra integral equations with algebraic or logarithmic singularities in their 
kernels. 

1. INTRODUCTION 

The solution of a second-kind Fredholm integral equation with weakly singular 
kernel is typically nonsmooth near the boundary of the domain of integration (its 
derivatives are unbounded). We refer to Richter [28], Pedas [21], [22], Schneider 
[30], Pitkaranta [24], [25], Vainikko and Pedas [41], Graham [8], Vainikko, Pedas 
and Uba [42], Vainikko [39], [40], Uba [34], Kaneko, Noren and Xu [12], R. Kangro 
[14], U. Kangro [15], [16], Pedas and Vainikko [23]. 

If one wants to obtain a high-order convergence in a numerical method for these 
equations one has to take into account, in some way, the singular behaviour of the 
exact solution. This can be done by using polynomial splines on special graded 
grids. The theory of graded grids in the approximation by polynomial splines goes 
back to Rice [27] (for a complete theory see, for example, de Boor [1] or Schumaker 
[32]. In the numerical solution of second-kind Fredholm integral equations with 
weakly singular kernels, graded grids were used by Chandler [71, Schneider [311, 
Vainikko and.Uba [43], Graham [9], Vainikko, Pedas and Uba [42], Vainikko [37], 
[38], [40], Hackbusch [10], Uba [35], [36], Kaneko, Noren and Xu [13], Tamme [33], 
Pedas and Vainikko [24]. 

A similar situation arises in the case of Volterra integral equations. For second- 
kind Volterra equations with weakly singular kernels the nonsmooth behaviour of 
solutions occurs near the initial point of integration. We refer to MVliller and Feldstein 
[20], de Hoog and Weiss [11], Logan [18], Lubich [19], Brunner [2], [4], Brunner 
and van der Houwen [6]. Again, if one is interested in finding an approximate 
solution which exhibits high-order accuracy, one may resort to approximation with 
polynomial splines on graded grids which reflect the singular behaviour of the exact 
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solution near the initial point. In the numerical solution of second-kind Volterra 
integral equations with weakly singular kernels graded grids were used by Brunner 
[4], [3], Brunner and van der Houwen [6], and Brunner [5]. 

In the previous papers the case of Fredholm equations was considered indepen- 
dently of Volterra equations and, vice versa, the results for Volterra equations were 
obtained independently of existing results on Fredholm equations. 

The purpose of the present paper is to show how in the analysis of the numerical 
solution of weakly singular Volterra integral equations by polynomial splines on 
graded grids it is possible to use corresponding existing results for Fredholm equa- 
tions. More precisely, on the basis of results from [40, pp. 22-23] we shall study 
the smoothness of solutions and the piecewise polynomial collocation method for 
a rather wide class of nonlinear weakly singular Volterra integral equations. Using 
special collocation points in conjunction with graded grids, we derive global con- 
vergence estimates and analyze a superconvergence effect at the collocation points. 
The main results of the paper considerably extend known ones and are formulated 
in Theorems 2.1-2.4 (see Section 2). The proofs of these assertions are given in 
Section 4 and are based on the following simple idea: for a given Volterra equation 

t 
(1.1) u(t) K(t, s, u(s))ds + f(t), 0 < t < T, 

we find the appropriate extensions K(t, s, u) and f(t) for K(t, s, u) and f(t) so that 
from the corresponding results of Section 3 for the FYedholm equation 

2T 

u(t) = K(t, s, u(s))ds + f(t), 0 < t < 2T, 

we can derive all results formulated in Theorems 2.1-2.4 for the Volterra equation 
(1.1). Finally, in Section 5 we present some numerical illustrations. 

2. VOLTERRA EQUATIONS WITH WEAKLY SINGULAR KERNELS 

2.1. Smoothness of the solution. Consider the nonlinear Volterra equation 

(2.1) u(t) J K(t, s, u(s))ds + f(t), 0 < t < T. 
0 

The following assumptions (V1)-(V3) are made. 
(VI) The kernel K = K(t, s, u) is m times (rn > 1) continuously differentiable 

with respect to t, s, u for t E [O,T], s E [O,t), u E R, and there exists a real 
number v E (-so, 1) such that for 0 < s < t < T,' u C R, and for nonnegative 
integers i, j, k with i + j + k < rn, the following inequalities hold: 

(2.2) 

(&)i(& )i()+ )K(t,s,u) < b(Jul){I + I log it-ssl if i 0 
- 81 ~~~if + i' > 0, 
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and 
(2.3) 

(t)i (, +,)) (&) K(t, s, ul ( ) ( +-)) K(t,s,u2) 

I1 if v+i<O, 

< b2(nax{fu1 ,U2j}lU-U2 1+ llog 0t-s81 if v+i=O0 

i.t -si--i if v+i>O, 

where the functions b1: [0, oo) -- [0, oo) and b2: [0, oo) -* [0, oo) are assumed to be 
monotonically increasing. 

(V2) f c C' IB(0, T], i.e. f (t) is m times continuously differentiable for 0 < t < T 
and the estimate 

Il if k < 1-v 
(2.4) f(k)(t) < constf I +Ilogt if k = - v, t E (0,T], 

(t1-'-k if k > 1-v, 

holdsfork=0,1,... ,m. 
(V3) The integral equation (1.1) has a solution u0 C L (O, T). 
Notice that conditions (VI) and (V2) guarantee the existence and uniqueness 

of the solution to (2.1) on some interval [0,T0], To < T. On [0,T] the existence 
and uniqueness of the solution will be guaranteed if we impose the following global 
Lipschitz condition on K (t,s,u): for 0 < t < T, 0 < s < t, ul,u2 EE R, there holds 

I1 if v < 0, 
K(t, s, ul )- K(t, s,'u2)j < blui-u2 {1 +ilogIt-sj if v=0, 

it - sl-1- if v>0, 

with a constant b independent of ut and U2 (cf. (2.3), i j = k = 0). We do not 
restrict the problem by this global Lipschitz condition, but assume (V3). Moreover, 
assuming (V3) we in fact could replace (VI) by the corresponding local condition 
for t C [0,T], s C [0,t), u - uo(s) < 8 with some 8 > 0. Outside this set, the 
kernel K(t, s, u) is involved neither in (2.1) nor in the corresponding collocation 
method described in Section 2.2. Nevertheless, we remain with the formulation of 
(VI) given above. 

It follows from (VI) that the kernel K(t, s, ut) may possess a weak singularity 
as s - t (i j k = 0, 0 < v < 1). In the case v < 0, the kernel K (t,s,u) is 
bounded for 0 < s < t < T and fixed u C R, but its derivatives may be singular as 
s -* t. Often the kernel K has the form 

K(t,s,u) = a(t,s,zt)(t-s"), jB < 1, 

or 

K (t, s, zt) = a(t, s, ui) log(t -), 

where a(t, s, u) is an m-smooth function of its arguments for 0 < s < t < T, u C R. 
Clearly, condition (VI) is satisfied in these examples with v = B and v 0, 
respectively. Actually, (VI) remains fulfilled even if derivatives of a(t, s, u) have 
certain (sufficiently weak) singularities as s -- t. 

The following result states the regularity properties of solutions of equation (2.1). 
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Theorem 2.1. Let the conditions (VI-) and (V2) be fulfilled. If equation (2.1) has 
a soluttion u in L' (O,T), then u E C"'l (0,T]. 

The proof of Theorem 2.1 is given in Section 4. We remark that smoothness 
properties of solutions to (more special) weakly singular Volterra equations are 
analyzed in [19, p. 6]. 

We note also that u E C"'2 (0, T] having an integrable derivative in (0, T] can 
be extended up to a continuous function on [0, T]. The extended function will be 
denoted again by u. 

2.2. Piecewise polynomial approximation of the solution. For given N C N 
let 0 = to < t1 < ... < tN = T be a partition of the interval [0, T] with grid points 

(2.5) t -t(N) = (j/N)TT, j O, 1, ... ,N, 

where r E IR, r > 1. For r = 1, the grid points tO,tl,... ,tN are distributed 
uniformly; for r > 1, the grid points are more densely clustered near the left 
endpoint of the interval [0,T]. In every subinterval [t_1, tj] (j = 1 ... ,N) we 
choose m collocation points 

(2.6) ~ ~~~~~~'tqi + 
1m (2.6) (j~~~i -- tj + i2 (-tj+l -tj), I , m 

where in.. , r, do not depend on N and satisfy 

(2.7) -1 _< r1 < 712 < ... < 7rz<1 

To a continuous function u: [0, T] -4 R we assign a piecewise polynomial in- 
terpolant PNU: [0,T] -4 R as follows: 1) on every subinterval [t(1,tj] (j= 
1,... ,N), PNU is a polynomial of degree m - 1; 2) PNU interpolates u at the 
points (j I, * * * I (jrll. 

(PN U) ((ii) = U ((i), i=1...,r7n; j=-1,...,N. 

Thus, the interpolation function (PNu) (t) is independently defined in every subin- 
terval [tji, tj] (j = 1, . . . , N) and may be discontinuous at the interior grid poilnts 
t =t (j t 1,.. , N - 1). We may treat PNU as a two-valued function at these 
points. Note that in the case r7i -1 and Ti= 1, PNu is a continuous function 
on [0,T]. 

Let EN denote the range of the interpolatory projection PN, that is, the set of 
all piecewise polynomial functions on [0,T] which are polynomials of degree not 
exceeding an - 1 on every subinterval [t -1,tj] (j = 1,... , N). We introduce also 
the notation 

h = T/N. 

We look for an approximate solution UN E EN to the integral equation (2.1) which 
satisfies this equation at the collocation points (2.6): 

(2.8) 

[ItN(t) - J K(t, s, UN(s))ds-f (t)]t=1 j = 0, i = 1,.. , m; j 1, ... N. 

0 

Conditions (2.8) form a system of equations whose exact form is determined by 
the choice of a basis of EN. For instance, in the interval [t_1, tj] (j 1,... , N) 
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we may use the representation 
m 

(2.9) 'UN(S) CiAOji (S), S e [tj_l, tjl, 
i=1 

where (pji(s) (s e [tj1, t3]) is the polynomial of degree m - 1 such that 

oji (j ik) {1 if kc 
i) k 

The collocation conditions (2.8) then lead to the following (nonlinear) system of 
algebraic equations for the coefficients {cji }: 

j-1 tlm 

(2.10) ci Q = j ((iz) + J K((jj, s, E clkolk(s))ds 
1=1 ti_i k=1 

(ji m 

+ K v(4j,s, EZcj k pjik(s))ds, i = 1... ,m;j = 1,... ,N. 

tj-l k=1 

This represents a recursive process: First, the coefficients c11, ... , cim can be found 
by solving the system 

(2.11) cl f f(li) + J K(ij s, E Clkflk(s))ds, i = 1,... , m. 
0 k=1 

Using c1l, ... ., cm, one can then find c21, ... , C2m from the system 

C2i = f(2i) + K(42i, S, EClky2lk(s))ds 
O h~~=1 

42i m 

+ K K(4211 s, E C2k f 2k (s)) ds, i = 1, . ,m 
ti k=l 

Generally, using c1l,... , C1m,... ,CJi1,l, ... ,cj_1,m, the coefficients cjl,... cjm 
can be found from the m equations (2.10) with corresponding j. Thus at every step 
(on every subinterval [tj-1, tj]) one has to solve a system of m nonlinear equations; 
the initial guess can be chosen by using the solution on the previous subinterval. 
For the first block system (2.11) a suitable initial guess is c1l = f(4i), i M1, . . , m 

The following theorem states the global convergence rate for the collocation 
method (2.8). 

Theorem 2.2. Let assumptions (V1)-(V3) be fulfilled and let the collocation points 
(2.6) corresponding to the gridpoints (2.5) be used. 

Then there exist an No e N and a real number 60 i 0 such that, for N > No, the 
collocation method (2.8) defines a unique approximation UN E EN to the solution uo 
of equation (2.1) satisfying I UN - Uo I L? (O,T) < o0. The following error estirmates 
hold: 

1) if m<1-v then 

(2.12) max IUN (t) - UO(t) I < chm for r > 1; 0<t<T 



1084 HERMANN BRUNNER, ARVET PEDAS, AND GENNADI VAINIKKO 

2) if m = 1-v then 

(2.13) <max IUN (t) -UO (t) <C{ hm(1+lloghl) forr-1, (2.13) 
<t< hmt(t for r > 1, 

and 

(2.14) IIUN -UOI LP(0,T) < ch for r > 1, 1 < p < oo; 

3) if m > 1-v then 

(2.15) max I UN (t)-UiO(t)I < C hr((v) for 1 <r < m 
0<t<T hm for r? 

and for 1 < p < oo, 

(2.16) 

{ri1-v-H) if 1< r < M1, m>1-v+i, 
p 

m1 {chm(1 11ogh )P ifm> UN -UO LP(0,T) c + |r m ?1-v +p 
p 

thm if r> m 
+) r>1; 

p 

4) if r r(m, v) > 1 is restricted by conditions 

r >2(lM) for 0 < v <1, 
(2.17) r > 2m for v < 0, 

r > 1 for v < 0, v <-(m-2), 

then 

(2.18) EN < chm, 

where 

(2.19) EN max UN(Qji) 
- 

Uo((i)j i = 1,..., in; j'=1,...N 

is the maxirmal error of the approximate solution UN E EN at the collocation 
points (2.6). The constants c in (2.12)-(2.18) are independent of h = T/N. 

The proof of Theorem 2.2 is given in Section 4. 

2.3. Superconvergence at the collocation points. We now assume that the 
points qj1,... ,rm in (2.6) (the points (2.7)) are the knots of the quadrature formula 

1m 

(2.20) J 

-1 
?1 <.. <17m<1 

-1 i=l 

which is exact for polynomials of degree m + ,t, ,t e Z, 0 < ,t < m - 1. Actually, 
the weights w1,... , wm of the quadrature formula (2.20) will not be used in our 
analysis. The case t = m - 1 corresponds to the Gauss quadrature formula and is 
of the greatest interest in the following theorem. 

Theorem 2.3. Let the following conditions be fulfilled: 

(Vl') The kernel K(t, s, u) and &K(t, s, u)/&u are m + ,t + 1 tirmes (m, ,u e Z, 
m > 1, 0 < At < m - 1) continuously differentiable with respect to t, s, u for 
t e [0,T], s E [0,t), u e R, and satisfy (2.2) and (2.3) with i +j + k < 
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(V2/) f E C Mr+,lv(0 T]. 

(V3) The integral equation (2.1) has a solution u0 E L?(0, T). 

(V4) The collocation points (2.6) are generated by the knots (2.7) of a quadrature 
formula (2.20) which is exact for all polynomials of degree m + t, 0 < ,t < 
mr-1. 

(V5) The scaling parameter r = r(m v, vt) > 1 is subject to the restrictions 

r > m r, > m+-v if 1-v<[tA+l1, 

2r > rmn r > m+AL+l if A+ 1 < 1-v < m, 
(2.21) r? -i> m+A+l r> 1 if 1-v=m, 

r > m2- if 1-v > m. 

Then 

(h if v < 0, 

(2.22) EN < chm h(l + I log hl) if v = 0, 
thl-v if v > 0, 

where EN is defined in (2.19) and c is a positive constant which is independent of 
h = T/N. 

The proof of Theorem 2.3 is given in Section 4. 

Theorem 2.4. Let the conditions of Theorem 2.3 hold. Assume additionally that: 

(V6) v < 0, ,t > 1, and for O < j < min{,t-1,-v}, 0 < k < min{,t-1,-v}, the 
derivatives 

(2.23) ( ) (a) K(t, s, ) 

are bounded and continuous for 0 < t < T, 0 < s < t, Jul < T with any 

T > 0, and ( a) ( )k+ IK(t, s,) O_ 0 ass -- t -0. 

Then 

rh+1 if 1-V>kt+l, 

(2.24) EN < chm h"+ 1 (1 + I log hl) if 1-v=,t+1, 

hl-v if 1-v<Kt+1, 

where EN is defined in (2.19) and the constant c is independent of h = T/N. 

The proof of Theorem 2.4 is given in Section 4. 

Remark 2.1 (comment on the additional condition (V6)). Assumption (VI') of 
Theorem 2.3 guarantees the boundedness and continuity of the derivatives (2.23) for 
j< min{,u-1,-v},j,+k < m+,u+1, on any set O < s < t < T, -r < u < , r > 0; 
for j -v with v E Z, -v < ,t-1, a logarithmic singularity may occur. Condition 
(V6) bans this possible singularity. 

Remark 2.2. The estimate maxo<t<T 'uN(t) - Uo(t)I < chm is of optimal order 
even for a function u E C? [0, T]. Theorem 2.2 shows that, using sufficiently great 
values of the scaling parameters r, the optimal accuracy O(hm) can be achieved for 
the collocation method (2.8). Theorems 2.3 and 2.4 show that superconvergence 
occurs at the collocation points. 
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Remark 2.3. Under the conditions of Theorem 2.3 

T 

h if < 0, 
max 

IUN(t)- UO(t) 
ch"' h (1 + I log h if v = 0, 

O<t<T 

hl-v if >0, 

where 
t 

UN(t) j K(t, S, UN(S))dS + f(t). 

Under the conditions of Theorem 2.4, 

h[ h+1 if 1-v>ft-+ 1, 

max |'UN(t) - uo(t) I < chhn 7 hfb+? (1 + I log hl) if 1-v =,ut+ 1, 
O<t<T 

1hl-l if 1-iV<,t+ 1. 

3. FREDHOLM EQUATIONS WITH WEAKLY SINGULAR KERNELS 

In this section we formulate some results from [39, pp. 22-23] about Fredholm 
integral equations which give a basis for the proofs of the results presented in Section 
2. 

Consider the nonlinear Fredholm integral equation 

2T 

(3.1) u(t) J K(t, s, u(s))ds + f (t), 0 < t < 2T. 

0 

We make the following assumptions (Fl) and (F2). 
(Fl) The kernel K = K(t, s, u) is m times (m > 1) continuously differentiable 

with respect to t, s, u for t, s e [0, 2T], t -, s, u e ]R, and there exists a real number 
v e (-oo, 1) such that for nonnegative integers i, j, k with i +j + k < m inequalites 

(2.2) and (2.3) hold. 
(F2) f e Cr'nv(0, 2T), i.e. f (t) is m times continuously differentiable for 0 < t < 

2T, and the estimate 

(1 if k<1-v, 

(3.2) f(k)(t) < constf 1 + I log g(t) if k = 1 - v, t E (0, 2T), 

0 Q(t)lvk if k > 1 - v, 

holds for k = 0, 1, ... , m, where g(t) = min{t, 2T - t}. 

Theorem 3.1 ([23], [39, p. 137]). Let conditions (Fl) and (F2) be fulfilled. If the 
integral equation (3.1) has a solution u e L??(0, 2T), then u E Cn v(0, 2T). 

In the sequel we shall assume that: 
(F3) The integral equation (3.1) has a solution uo eL'(0, 2T) and the linearized 

equation 

2T 

(3.3) v(t) JKo(t,s)v(s)ds, Ko(t,s) =&K(t,s,u)/&'u = u=u (s) 
0 

has in L' (0, 2T) only the trivial solutioni v =-0. 
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For given N C N, let 0 = to < t1 < ... < t2N = 2T be a partition of the interval 
[0, 2T] with gridpoints (2.5) and gridpoints tN+?1, , t2N which are obtained by 
reflecting tN1,... ,to with respect to tN = T: 

(3.4) 
tj =(jlN)rT, j = 0, 1,... ., N; tj+N = 2T t-tyj) 1, ... ., N. 

In every subinterval [tj-1, t] (j = 1, ... , 2N) we choose m collocation points (2.6) 

determined by the points (2.7). We denote by EN the set of all piecewise polynomial 
functions on [0, 2T] which are polynomials of degree not exceeding m - 1 on every 
interval [tj1, tj] (j = 1,... , 2N). We look for an approximate solution UN E EN 
to the integral equation (3.1) which satisfies this equation at the collocation points 
(2.6) corresponding to the gridpoints (3.4): 

2T 

(3.5) [UN(t) J K(t, s, UN(s))ds - f(t)] t j = ?' 

0 

i= 1,... jm j=1,... ,2N. 

Theorem 3.2 (see [39, p. 143], cf. also [43], [42]). Let conditions (F1)-(F3) be ful- 
filled and let the collocation points (2.6) with gridpoints given by (3.4) be used. 

Then there exist an No e N and a real number 6o > 0 such that for N > No, the 
collocation method (3.5) defines a unique approximation UN E EN to the solution uo 
of equation (3.1) satisfying IIUN - U0I L(0,2T) < 6o. The following error estimates 
hold: 

1) if m < 1-v then 

(3.6) max JUN (t) -UO(t)I < ch' for r > 1; 
0<t<2T 

2) if m = 1-v then 

(3.7) max IUN(t) - Uo(t) ? hm(1 + log h 1) for r 
0<t<2T {hm for r > 1, 

and 

(3.8) IIUN - U0 LP(0,2T) < ch for r > 1, 1 < p < oo; 

3) if m > 1-v then 

(3.9) max I UN (t) - uO(t) < C < 1for 1 < r < 
0<t<2T Ihm for r? 

and 

(3.10) 
hr(1-v+V) if 1r < r <T' m>1-v+i 

pp 

IU2N - UO ILP(0,2T) < ct hm(l -k I log hl)P if r = I_+ m r > 1 - v+ p 

ohm if r > m r>1->1, 
p 

for 1 < p < oo; 
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4) if r = r(mn, v) > 1 satisfies (2.4), then 

(3.11) EN < ch" 

where 

(3.12) EN ,max I.UN((ji) -UO((i)I 
. rm;j=1 

.. 2N 

Theorem 3.3 ([24]). Let the following conditions be fulfilled: 

(Fl') The kernel K(t, s, u) and &K(t, s, u)/&u are m-+ - + I times (m, i E Z, rn > 
1, 0 < A < m -1) continuously differentiable with respect to t, s, u for 
t,s e [0,2T], t 7 s, u e IR, and satisfy (2.2) and (2.3) with i + j + k < 
mr + p + 1, -oo < v < 1. 

(F2/) f E Cm+?L+v (0, 2T). 
(F3) The integral equation (3.1) has a solution uo e L'(0, 2T), and the linearized 

equation (3.3) has in L ?(O, 2T) only the trivial solution v- 0. 
(F4) The collocation points (2.6) are generated by the knots (2.7) of a quadrature 

formula (2.20) which is exact for all polynomials of degree m, + b, 0 < ,u < 
mr-1. 

(F5) The scaling parameter r = r(m, v, At) > 1 satisfies the conditions (2.18). 

Then 

(h if v <0, 
EN < chm h(1 + I loghl) if v = 0, 

t hl-v if v f 0, 

where EN is defined irn (3.12). 
If, irn addition, we assume 

(F6)v < 0, ,u > 1, and for 0 < j < inin{t-i,-v}, 0Ik min{,-i,-v}, the 
derivatives (2.23) are bounded and continuous on [0, 2T] x [0, 2T] x [-T, T] 

with any T > 0, 

then 

hbl+l if i-v>[t+i, 
EN < ch77 h+ 'l(I + I log h ) if l-v=,ut+l, 

thl-v if i-V<At+l. 

4. PROOF OF THEOREMS 2.1-2.4 

Assume that the kernel K(t, s, u) of equation (2.1) satisfies (VI) for 0 < s < t < 
T, -oo < u < oo. Assume also that the forcing function f (t) of equation (2.1) 
satisfies (V2) for 0 < t < T, and let uo e L?(0,T) be a solution of equation (2.1). 
First of all we extend K(t, s, u) up to a iK(t, s, u) which will satisfy condition (Fl) 
for 0 < t < 2T, 0 < s < 2T, t # - s,u E R. 

We shall use an extension method based on reflecting (see, for example [17]): for 
a given function v e Cm[a - T, a], m e N, a, C J, T >0, put 

[v(s) for s [a-T,a], 

(4.1) vl(s) {i citv(a - j(s - a)) for s e (a, a + 7l. 
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where 

m 

(4.2) (-j)kcj = 1, k = 0,1 ..... ,m. 
j=O 

FRom (4.1) and (4.2) one obtains that 

E C 't [a-T, a + 

We now construct an extension for the kernel K(t, s, u) of equation (1.1). First, 
for any u e R , 3T < t < T, we extend K(t, s, u) with respect to s for s < 0 
(denoting this extension again by K(t, s, u)): 

K(t, s, u) = e(-s) m cjK(ta-S u)) -T < s < 0. 
j=o 

Here (Co, cl,... ,cmn) is the (unique) solution of the system (4.2) and e E C'I(R+) 
is a smooth function such that 

(4-3) e(\f1 
or 0<s< m 

0 for 2T< s < T. 

Second, for any u e IC, we extend K(t, s, u) with respect to t (T < t < 2T) along 
the lines s = t - y (0 < y < 2T): 

rK(t, s, u) for 0 < s < t < T, 
Im 

K, (t, s, U) e(t - T) E cjK(T - j(t - T), T - j(s + -y-T) - -y, u) 
Ij=o 

I for T<s<t<2T t-s=y. 

Finally, in the third step we put 

(4.4) K(t, S,U) fKI(t,s,'u)el(u) for O<s<t<2T, 
(. for 0 < t < s < 2T, 

with an e1 e Co?(IR), el(u) = 1 for Itul < 2M, el(u) = 0 for Jul > 3M, where 
M = maxo<t<Tluo(t)J. It is easy to check that the function K(t,s,u) satisfies 
(Fl). 

Indeed, using (V1) we obtain that K(t, s, u) is m times continuously differentiable 
with respect to t,s,u for t e [0,2T], s e [0,2T],t :4 s, u E ]R. Furthermore, it 
follows from the above construction that: 

1) if 0 < s < t < T, u E Rf, then 

+ _ 
k 

( at ) (a)kt [as )((aue(a] 

= r-8~~ r -4 [- K(t .s, uAej (u)]8 
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2) if T < s < t < 2T, u R , then 

(4.5) 

(t)i (0t+ K)i ( )k(tsu) 

- [(a> (0 + ) (:u)ke(t-T)] 

m 

x Z cpK(T -p(t), T -p(s + y - T) - y, u)el(u) 
p=O 

+e(t-T)c (C )iP ( + &)i()k 

x [K(T-p(t-T), T-p(s + 'y-T)- 'y, u)el(u)] 

3) if 0 < t < s < 2T then 

(&) i ( + &)j ( )K(t ) 0. 

In case 1) we obtain the estimates (2.2) and (2.3) for K(t, s, u) using Assumption 
(VI). In case 3) statements (2.2) and (2.3) with respect to K(t, s, u) are trivially 
fulfilled. 

Now consider case 2). Using (4.3), (4.5) and (V1), we are led to 

(&t)i (Et Es+ ) ( K) (t) S 

1 if v< < if v+i<O1 
< cb (3M) I + I log It-sl if v=O + 1+ log lt-sl if v+i=O 

it- Si-,- if v >O ) it - SI--i if v+i >O 

1 if v +ii < f, 
< c'bl (3M) 1+IlogIt-sII ifv+i=O, 

i lt - sI-v-i if v + i > 0. 

In a similar way we verify that condition (2.3) is also satisfied. 
So, we have shown that the function K(t, s, u) is m times continously differen- 

tiable with respect to t, s, u for t, s, u e [0, 2T], t 7 s, u E ]R, and satisfies conditions 
(2.2) and (2.3) with some b1 and b2 independent of auI and max{ Iul , U2 I}, respec- 
tively. Thus, K(t, s, u) also satisfies the global Lipschitz condition: for t e [0, 2T], 
s e [0,t), Ul, U2 e R, 

if v <0, 
(4.6) Ik(t, s,I) - k(t, s, U2)1 < b 6 I + logt -Sll if v = 0, 

it - SI-V if v >0, 
with a constant b not depending on u1 and U2. 
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We now define 

(f(t) for O < t < T, 
-4-7) m 

(4.7) 1(t) e(t-T) E cjf(T-j(t-T)) forT< t < 2T, 
j=0 

where (co, c,.. ., cm) is the solution of the system (4.2) and e E C' (R+) is defined 
in (4.3). It is clear that i E Cm'v (O, 2T) C C [O, 2T]. 

Consider the equation 
b2T 

(4.8) U(t) j K(t, s, U(s))ds + f (t), 0 < t < 2T, 
0 

where k and I are defined by (4.4) and (4.7). Equation (4.8) is actually a Volterra 
integral equation, since K(t, s, u) = 0 for 0 < t < s < 2T. Due to the weak 
singularity of the kernel K(t, s, u) and the global Lipschitz condition (4.6), (4.8) is 
uniquely solvable in C[O, 2T]; let i0o E C[O, 2T] denote the solution. It follows from 
the above construction that iiio(t) = uo(t) for 0 < t < T. According to Theorem 
3. 1, lO (E Cm"'(0, 2T); therefore uo E Cm"v (0, T]. Theorem 2.1 is thus proved. 

Further, for 0 < t < 2T, the linear homogenous Fredholm equation 
f2T~ k,,t 

V(t) ]Ko(t,s)v(s)ds, Ko(t,s)= OK(t-s'u) 
u=,0 (s) 

actually takes the form of a linear homogeneous Volterra equation, 
t 

v(t) Ko (t, s)v(s)ds, 

and therefore has in L? (0, 2T) only the trivial solution v 0_ . Thus condition (F3) 
is fulfilled with respect to the equation (4.8). Finally, assume that the gridpoints 
(3.4) are used. Then the assertions of Theorem 2.2 follow immediately from the 
corresponding statements of Theorem 3.2 about equation (4.8). 

Thus, Theorem 2.2 is proved. 
In a similar way we obtain that the function K(t, s, u) in (4.4) satisfies the con- 

ditions (Fl') and (F6) whenever the kernel K(t, s, u) of the equation (2.1) satisfies 
the conditions (VI') and (V6), respectively. Finally we obtain that the function 
f(t) in (4.6) satisfies (F2') as long as the forcing function f(t) obeys (V2'), and 
condition (F3) will be fulfilled with respect to (4.8) as long as equation (2.1) is 
solvable in L? (0, T). Therefore, assuming that the conditions of Theorem 2.3 and 
Theorem 2.4, respectively, are fulfilled, the statements of Theorems 2.3 and 2.4 
follow immediately from Theorein 3.3. 

Hence, Theorems 2.3 and 2.4 are proved. 

5. NUMERICAL EXAMPLE 

Let m 2, and let q1 -X and ?72 = be the knots of the Gauss quadrature 

formula f W(p()< rl + W('q2)- In this case the approximate solution UN E EN 
-1 

to equation (2.1) in the interval [tyi, vt] (j =1,.. , N) can be represented in the 
form 

(5.1) UN(t) = C - 
i 

j 1 + C32 - t;-i < t < t; 

(j2 - (j1 3j2 - (j1 
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where (j1, (j2 are the knots (2.6) and the coefficients Cjk = UN(jk) (k = 1, 2; j 
1,... , N) are determined from the system (2.10) (m = 2). Ffrom Theorem 2.2 we 
obtain for the approximate solution (5.1) the estimate 

(5.2) EN < ch for {r > i if v > 
0, 

r>I if v <0, 

where h = T/N and 

(5.3) EN ~ max zUN (~ji) - UO(~ji)LI i =.1,2,j=1..., N 

From Theorems 2.3 and 2.4, we obtain the following estimates for the error (5.3) 
(see (2.22), (2.24), m= 2 with u= 1): 

( h if iv < 0, 

(5.4) EN < ch2 h(l + Iloghl) if v = 0, 
thl-v if iv> 0, 

or (under the conditions of Theorem 2.4) 

(h2 if v< -1, 

(5.5) E < ch2 {h2(I + Iloghl) if i = -1, 

thl-v if v > -1, 

provided that 

r > I if v < -2, 

(5.6) | > 4 if -2 < v < -1, 
r >3- 

if-1 < v<1I- v/2, - 2 1-2i,<1 r > 12 if I1- F2 v < 1. 

Now we present the following example. Consider the integral equation 

(5.7) u(t) = /(t-s<1l2u2(s)ds + [1/2(1--t) 0 < t < T. 
J ~~~~~~~3' 

0 

It is easy check that uo(t) = t1/2 is the exact solution to equation (5.7) and As- 
sumptions (VI') and (V2') of Theorem 2.3 are fulfilled with v = 1/2, rn = 2, 
,u= 1. 

The equation (5.7) was solved numerically by the collocation method (2.10) 
(m = 2), where the Gauss points r72 =- = /3 were used for determining the 

collocation points (2.6), and we chose r = 41/10 > 2/(1 - v) (see (5.6)). At every 
step (on every subinterval [tj_-, tj]) the coefficients cji = UN((ji) (i = 1, 2) were 
calculated from (2.10) (m = 2) by the Newton method. All the integrals which are 
needed for the construction of the system (2.10) were found analytically. Some of 
the numerical results for T = 3/4 are presented in the following Table 1, where EN 
is defined in (5.3). The experiments were carried out on an IBM 4381 (in double 
precision). 

From Table 1 we can see that the numerical results are consistent with the 
theoretical estimate, which is EN = O(h5/2), h = 0.75/N. Notice that the number 
of collocation points (the number of unknowns) is 2N. 
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TABLE 1 

N EN (r = 41/10) 6EN/ /2/2 

4 0.55E-01 

8 0.80 E- 02 0.97 E- 02 

16 0.12 E- 02 0.14 E- 02 

32 0.19 E- 03 0.21 E- 03 

64 0.32 E- 04 0.33 E- 04 
128 0.20 E- 05 0.57 E- 05 

In the same example on longer intervals (e.g. T = 4), some instability of the 
approximate solution was observed. The numerical stability of the scheme is worth 
examining independently. 
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